
www.manaraa.com

Knowl Inf Syst (2017) 52:83–111
DOI 10.1007/s10115-016-1013-1

REGULAR PAPER

Synchronization-based scalable subspace clustering
of high-dimensional data

Junming Shao1 · Xinzuo Wang1 · Qinli Yang1 ·
Claudia Plant2 · Christian Böhm3

Received: 16 June 2015 / Revised: 11 October 2016 / Accepted: 18 November 2016 /
Published online: 2 December 2016
© Springer-Verlag London 2016

Abstract How to address the challenges of the “curse of dimensionality” and “scalability”
in clustering simultaneously? In this paper, we propose arbitrarily oriented synchronized
clusters (ORSC), a novel effective and efficient method for subspace clustering inspired
by synchronization. Synchronization is a basic phenomenon prevalent in nature, capable of
controlling even highly complex processes such as opinion formation in a group. Control of
complex processes is achieved by simple operations based on interactions between objects.
Relying on the weighted interaction model and iterative dynamic clustering, our approach
ORSC (a) naturally detects correlation clusters in arbitrarily oriented subspaces, including
arbitrarily shaped nonlinear correlation clusters. Our approach is (b) robust against noise
and outliers. In contrast to previous methods, ORSC is (c) easy to parameterize, since there
is no need to specify the subspace dimensionality or other difficult parameters. Instead, all
interesting subspaces are detected in a fully automatic way. Finally, (d) ORSC outperforms
most comparison methods in terms of runtime efficiency and is highly scalable to large and
high-dimensional data sets. Extensive experiments have demonstrated the effectiveness and
efficiency of our approach.

Keywords Subspace clustering · Synchronization · High-dimensional data · Large data set

1 Introduction

Clustering is an important analysis technique for discovering and understanding the natural
structure of a data set. A clustering algorithm determines a grouping of the data set into

B Junming Shao
junmshao@uestc.edu.cn

1 School of Computer Science and Engineering, Big Data Research Center,
University of Electronic Science and Technology of China, Chengdu 611731, China

2 Institute for Computer Science, University of Vienna, 1090 Vienna, Austria

3 Institute for Computer Science, University of Munich, 80538 Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-016-1013-1&domain=pdf

www.manaraa.com

84 J. Shao et al.

so-called clusters such that objects from the same cluster are as similar as possible whereas
objects assigned to different clusters differ from each other as much as possible. To know
this structure is important and valuable because the different clusters often represent dif-
ferent classes of objects which have been unknown previously. Clustering is an essential
tool for knowledge discovery in a large variety of applications including biology, medicine,
economy, and society. Therefore, clustering has attracted a huge volume of attention, with
multiple books, e.g., [20], surveys, and research papers, e.g., [5,38] to mention a few. Thanks
to the modern technology advance, nowadays, tremendous amounts of large data sets in a
large variety of application domains have been produced. These large real-world data sets
are often represented as sparse, high-dimensional feature vectors, contaminated by outliers
and noisy objects. Clustering such high-dimensional large data becomes difficult for tradi-
tional clustering methods due to two challenging problems: “curse of dimensionality” and
“scalability.”

To cure the curse of dimensionality in clustering, the new concept of subspace clustering
has been introduced which automatically detects clusters in subspaces of the original feature
space. A number of subspace clustering algorithms have already been proposed, which can be
mainly distinguished as axis-parallel subspaces clustering, e.g., [2,4,21], arbitrarily oriented
subspace clustering (also called generalized subspace clustering, or correlation clustering),
e.g., [3,9,34], and mixed membership subspace clustering [16]. However, most of these
algorithms fail to discover clusters of complex shapes and different densities. Let’s take
CLIQUE [4] for example. This approach detects dense units by using a grid of regular size
to divide each dimension into bins. Adjacent dense units are then combined to form clusters.
Obtaining meaningful results is dependent on the proper tuning of the grid size and the
density threshold parameters. Even after well tuning both parameters, the algorithm will
likely fail if at least two clusters with quite different densities are present in the data set. This
problem also exists in other approaches, such as density-based subspace clustering SUBCLU
[21]. Another challenge for subspace clustering regards the search strategy for the suitable
subspaces. The number of possible axis-parallel subspaces is exponential (2d) in the number
of dimensions, d , and the number of arbitrarily oriented subspaces is even infinite. Therefore,
a complete enumeration of all possible subspaces to be checked for clusters is not feasible.
Consequently, all previous solutions rely on specific assumptions andheuristics, and try tofind
promising subspaces during the clustering process, for instance in an iterative optimization.
We will see that these previous approaches of learning suitable subspaces work well if (but
only if) subspace clusters are locally well separated and no outlier objects (belonging to no
cluster) exist. In the presence of outliers in the local neighborhood of cluster points or cluster
representatives in the entire feature space, most previous subspace clustering algorithms fail
to detect subspace clusters, because the algorithms try to find suitable subspaces for each
cluster from the local neighborhood of cluster points or cluster representatives in the entire
feature space.

Moreover, the growing size of the data sets produced in diverse fields is posing another
increasing challenge for most established clustering algorithms. Due to the high time com-
plexity (e.g., d2 · n2 + d3 · n for 4C [9]), most existing algorithms become infeasible for
large data sets due to the unacceptable computation time. More scalable subspace clustering
should be proposed to handle large-scale data sets.

To deal with these problems, in this paper, we consider subspace clustering from a dif-
ferent point of view, synchronization. Synchronization is a prevalent phenomenon in nature.
It is known that synchronization is rooted in human life from the metabolic processes in
our cells to the highest cognitive tasks we perform as a group of individuals [7]. A para-
digmatic example of a synchronization phenomenon in nature is the synchronous flashing

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 85

of fireflies observed in South Asian forests. Recently, many synchronization-based mod-
els [1,10] and data mining algorithms [10,18,22,30–32] have been proposed and showed
many desirable properties. Here, we introduce the concept of synchronization to subspace
clustering. The key idea of synchronization-based subspace clustering is to regard each data
object as a phase oscillator, the feature vector of an object as its phase, and simulate the
dynamical behaviors of the objects over time. Through nonlinear weighted interaction among
objects, objects with similar attributes in arbitrarily oriented subspaces tend to synchronize
together.

1.1 Contributions

Inherited by the concept of synchronization, our scalable subspace clustering approach,
ORSC (arbitrarily ORiented Synchronized Clusters) shows many desirable properties, most
importantly:

1. High-performance clustering ORSC faithfully captures the natural cluster structure of
the large-scale high-dimensional data by dynamic clustering. As the simulated nonlinear
object movement follows the intrinsic structure of the data, our ORSC approach reliably
detects clusters of arbitrary number, shape, and size in subspaces, even in difficult settings
with noise and outliers (Fig. 9; Table 3).

2. Efficient subspace searching Thanks to the powerful concept of synchronization, ORSC
does not need to scan all possible subspaces and uses an intuitive and efficient strategy:
finding all subspace clusters by searching all synchronized objects instead.

3. Scalability Using entropy-based data partitioning, ORSC is able to cluster large data sets
(millions of objects) efficiently in a simple yet effective divide-and-conquer fashion. As
it turns out, ORSC is not only more accurate than state-of-the-art subspace clustering
algorithms (e.g., 4C [9],ORCLUS [3], Curler [34]), but also outperforms these algorithms
in terms of scalability on larger data sets (Sect. 6; Figs. 13, 14, 15).

4. ParametrizationORSC is easy to parameterize, as there is no need to specify the desirable
number of clusters. Moreover, in contrast to existing methods, there is also no need to
specify the subspace dimensionality and all interesting subspace clusters are detected
automatically.

The remainder of this paper is organized as follows: In Sect. 2, we briefly survey the related
work. Section 3 presents our algorithm in detail. Section 4 extends the algorithm to handle
large-scale data sets. The relationship and distinction of synchronization-based clustering
algorithms are discussed in Sect. 5. Section 6 contains an extensive experimental evaluation.
We give a short discussion and finally conclude the paper in Sect. 7.

2 Related work

Asmost traditional clustering algorithms fail to detect clusters embedded in high-dimensional
data, various subspace clustering approaches have been studied [3,4,9,12,15]. Subspace
clustering algorithms like CLIQUE [4] and its extensions ENCLUS [11], OptiGrid [17],
projected clustering algorithms such as PROCLUS [2], DOC [27], and SUBCLU [21] only
find axis-parallel clusters. Pattern-based subspace clustering methods (e.g., [25,36]) aim
to group objects that exhibit a similar trend in a subset of attributes into clusters rather
than objects with low distance. However, they limit themselves to finding only clusters
that represent pairwise positive correlations in the data set. Here, we focus on the more

123

www.manaraa.com

86 J. Shao et al.

recent correlation clustering algorithms which can find clusters in arbitrarily oriented sub-
spaces. Recently, many arbitrarily oriented subspace clustering algorithms such as ORCLUS
[3], 4C [9], Curler [34] are proposed to find clusters with arbitrarily oriented principle
axes.

ORCLUS [3] is one of the iterative top-down search methods for arbitrarily projected sub-
spaces. It integrates PCA into k-means and includes three steps: assign clusters, determine
subspaces, and merge them. However, it requires users to specify the number of clusters
and the size of the subspace dimensionality in advance. If the estimation does not match
with the actual number of clusters, the result of ORCLUS tend to fail. Another problem is
that ORCLUS cannot handle the noisy and sparse data efficiently. Moreover, due to using
random sampling to improve computation speed and scalability, it may suffer from miss-
ing smaller clusters. 4C [9] combines PCA and density-based clustering (DBDSCAN) to
identify local subgroups of the data objects sharing a uniform but arbitrarily complex cor-
relation. It formalizes the correlation-connected cluster as a dense region of points in the
d-dimensional feature space with at least one principal axis with low variation along this
axis. Like ORCLUS, 4C assumes the clustering structure is dense in the entire feature space;
thus, it cannot handle sparse data properly. Moreover, both ORCLUS and 4C limit them to
identify linear correlation clusters without considering nonlinear correlation clusters. Actu-
ally, in real-life data sets, correlation between attributes could however be nonlinear. To
address the nonlinear issue, Curler [34] is proposed which allows to detect both global and
local orientations of the clusters. This methodmerges themicroclusters generated by the vari-
ant of the EM algorithm according to their co-sharing level. Therefore, the resulting clusters
may represent a more complex, not necessarily liner correlation. However, like ORCLUS,
the performance of Curler is very sensitive to noise and strongly depends on the suitable
parametrization.

2.1 Synchronization and models

Recently, synchronization has attracted a large volume of interest in physics, biology, ecol-
ogy, sociology, communication, and other fields of science and technology. It is known that
synchronization is rooted in human life from the metabolic processes in our cells to the
highest cognitive tasks we perform as a group of individuals [7]. In general, synchronization
means adjustment of phases or frequencies of periodic oscillators due to weak interaction.
It is usually used in experimental studies and in the modeling of interaction between dif-
ferent systems demonstrating oscillating behavior. Due to the interaction of two (or more)
systems, their states can coincide. Currently, many synchronization-based models have been
proposed in diverse fields [1,6,10,18,22,28–32,37]. For instance, Arenas et al. [6] investi-
gate the synchronization phenomena for network analysis, and study the relationship between
topological scales and dynamic timescales in complex networks. Kim et al. [22] analyze the
cell cycle-specific gene expression to discover the groups of genes by modeling each gene as
an oscillator. Aeyels and De Smet [1] introduce a mathematical model for the dynamics of
chaos systems. They characterize the data structure by a set of inequalities in the parameters
of the model and apply it to a system of interconnected water basins. Böhm et al. [10] pro-
pose an extensive Kuromato model to simulate each object’s dynamics during the process
toward synchronization and discover cluster structure and outliers automatically. In contrast
to other algorithms, synchronization-based clustering algorithms have some desirable prop-
erties: (a) high-quality clusters detection, (b) noise robustness and (c) a natural hierarchical
data analysis.

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 87

3 The algorithm ORSC

In this section, we introduce ORSC, to find all possible synchronized clusters in arbitrarily
oriented subspaces. Before we can give an overview of the approach, we first illustrate the
main underlying concepts of synchronization-based subspace clusters.

3.1 Synchronization: a new viewpoint for subspace clustering

As indicated in Sect. 2, synchronization is a universe concept in our real world. For exam-
ple, synchronization seems to be a central mechanism for neuronal information processing
within a brain area as well as for communication between different brain areas. Results of
animal experiments also indicate that synchronization of neuronal activities in the visual
cortex appears to be responsible for the binding of different but related visual features so that
a visual pattern can be recognized as a whole. Inspired by these synchronization phenomena
and models, we consider the subspace analysis from a novel perspective: synchronization.
The key point is to view each dimension of one object as an oscillator and move dynam-
ically according to a weighted interaction model (cf. Sect. 3.2). Instead of modeling the
object movement based on the physical concept of gravity [8], here the object dynamics is
governed by the proposed extended Kuramoto model. Since the phase in traditional syn-
chronization models (e.g., Kuramoto model) is constrained in [−π π], the feature values
of objects may be arbitrary in real-world applications. In addition, to ensure object move-
ments driven by its local data structure, the coupling function should be non-decreasing
under the phase range. Therefore, the input data sets are first normalized to [0 1] to fit this
constraint. Afterward, for each object, we search its similar objects as interaction partners.
The strength of interactions from these similar objects is determined by its local structure.

(a) (b)

(c) (d)

Fig. 1 Illustration of synchronized clusters. a Cross section on X–Y axis. b Synchronized cluster on X–Y
axis. c Cross section on Y–Z axis. d Synchronized cluster on Y–Z axis

123

www.manaraa.com

88 J. Shao et al.

To ensure that all objects of a common arbitrarily oriented subspace cluster canmove together,
PCA is integrated into the interactionmodel to determine themain directions of the local clus-
ter structure. Through the weighted interactions, all objects in arbitrarily oriented subspace
clusters can easily synchronize together and form synchronized clusters. For illustration,
we demonstrate the concept with the help of a simple three-dimensional data set. Fig-
ure 1a, c represents the X–Y and Y–Z projection of the data, respectively. In the lower
dimensionality on X–Y axis, the cluster C1 is embedded in the perpendicular space plane
of the direction of the cluster. Meanwhile, the cluster C2 exists in the Y–Z axis. To find
such clusters, in this context, we define the notion of an arbitrarily oriented synchronized
cluster, which is a set of objects synchronized together through mutual interaction driven
by their local data structure in arbitrarily oriented subspaces. Specifically, like oscillators,
each object in a data set interacts with similar objects. Objects will change their states
and move to other objects through this nonlinear interaction, which we will elaborate in
detail in Sect. 3.2. The arrows in Fig. 1a, c illustrate the main directions of movements
for objects. Figure 1b, d further indicates the final states of objects (red points) after syn-
chronization. Finally, it is clear that all correlated objects move together and have the same
state in subspaces. These correlated objects are thus formed as synchronized clusters (cf.
Fig. 1b, d). To further support large-scale data clustering, an entropy-based data partition-
ing strategy is employed, which allows ORSC cluster large data sets (millions of objects)
efficiently. In the following, we start to elaborate how to construct the weighted interaction
model.

3.2 Weighted interaction model

Currently, the most successful way to explore the synchronization phenomena is the
Kuramoto Model [23,24], which is motivated by the behavior of systems of chemical and
biological oscillators. It is a mathematical model used to describe the dynamics of a large set
of phase oscillators by coupling the sine of their phase differences. All frequencies of oscil-
lators should be identical or nearly identical. Formally, the Kuramoto model (KM) consists
of a population of N coupled phase oscillators, where the phase of the i th unit, denoted by
θi , evolves in time according to the following dynamics:

dθi
dt

= ωi + K

N

N∑

j=1

sin(θ j − θi), (i = 1, . . . , N) (1)

where ωi stands for natural frequency of the i th unit and the constant K describes the
coupling strength between units. sin(·) is the coupling function. This model well describes
the collective behavior of all coupled phase oscillators toward synchronization, which implies
that all the oscillators interact with each other and will synchronize together finally. However,
this situation rarely occurs in real-life systems. Local synchronization is observed more
frequently, what means a local ensemble of oscillators synchronize together, where the whole
set of oscillators is split into several clusters of mutually synchronized oscillators.

Therefore, in order to introduce the Kuramoto model into subspace clustering, we recon-
sider it in a different way.

1. Local interaction fashion To exploit the hidden clusters or patterns in arbitrarily oriented
subspaces, the local structure of data should be investigated. Therefore, we focus on the
dynamics of objects in a local way.

2. Weighted interaction In high-dimensional space, the correlations in the dimensions are
often specific to data locality: Some objects are correlated with respect to a given set

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 89

of dimensions, and others are correlated with respect to different dimensions. Thus, the
coupling strengths of interactions of objects in relevant or irrelevant dimensions should
be considered with different weights.

In the following,wewill reformulate our interactionmodel based on the above two criteria.

3.2.1 Local interaction

To formalize the local interaction for each object, the intuitive way is to consider its ε-
neighborhood as follows.

Definition 1 (ε-Neighborhood) Given ε ∈ R and x ∈ D, the ε-neighborhood of an object
x , denoted by Nε(x), is defined as:

Nε(x) = {y ∈ D|dist(y, x) ≤ ε} (2)

where dist(y, x) is a metric distance function and Euclidean distance is used here.
However, such ε-neighborhood search cannot fit our goal well since it does not consider

the local data distribution. We intend to look for objects which are close considering the local
subspace cluster structure. Therefore, we use the Mahalanobis distance instead of Euclidean
distance to determine similar objects.

Definition 2 (ε-Neighborhood with Mahalanobis distance) Given ε ∈ R and x ∈ D, the
ε-neighborhood of an object x with Mahalanobis distance, Nm

ε (x), is defined as:

Nm
ε (x) = {

y ∈ D|
√

(y − x) · �−1
x · (y − x)T ≤ ε

}
(3)

where �x is the covariance matrix of ε-neighborhood of x . Since the Mahalanobis distance
considers the local data distribution, it can better search similar objects considering the local
cluster structure and is also less sensitive to noise. Figure 2 illustrates the similar objects
determination of an object P with different distance functions.

According to Definition 2, we extend the Kuramoto model in a local fashion, where each
object interacts with its ε-neighborhood with Mahalanobis distance over time. Moreover,
since we have no external knowledge of each object, all objects are assumed to have the same
frequency ω, which fits the condition of Kuramoto model. Here, we view each dimension of
an object as a phase oscillator. Its original value represents the initial phase.

Formally, let x ∈ Rd be an object in the data setD and xi be the i th dimension of the data
object x . Nm

ε (x) is the ε-neighborhood of object x . According to Eq. (1), the dynamics of

Fig. 2 ε-Range search with different distance functions

123

www.manaraa.com

90 J. Shao et al.

each dimension xi of the object x with a local interaction is written as:

dxi
dt

= ω + K

|Nm
ε (x)|

∑

y∈Nm
ε (x)

sin(yi − xi) (4)

Let dt = �t , then:

xi (t + 1) = xi (t) + �t · ω + �t · K
|Nm

ε (x(t))| ·
∑

y(t)∈Nm
ε (x(t))

sin(yi (t) − xi (t)) (5)

Since the term �t · ω is the same for each dimension of all objects and thus can be ignored.
Let C = �t · K , the dynamics of each dimension xi of an object x over time is written as:

xi (t + 1) = xi (t) + C

|Nm
ε (x(t))| ·

∑

y(t)∈Nm
ε (x(t))

sin(yi (t) − xi (t)) (6)

where t = (0, . . . , T) is the time step.

3.2.2 Weighted interaction

For most existing interaction models, e.g., [1,6,10,23], the coupling strength of the object
interactions is constant. However, this is not appropriate for subspace clustering since clus-
ters exist in different subspaces. Thus, to ensure all cluster objects can synchronize in the
corresponding subspaces, we consider the strength of interactions followed by the local data
structure of the objects. For an object x , we expect that the interactions along the main
directions of the local cluster structure (relevant and potentially correlated dimensions) are
imposed much higher weights while those in irrelevant dimensions have lower weights.
Therefore, to determine the main directions of the local cluster structure, PCA is used to
decompose the covariance matrix � of objects Nm

ε (x), which is denoted by � = V EV T .
The matrix V is called eigenvector matrix and the diagonal matrix E is called eigenvalue
matrix. The eigenvectors represent the principal directions of these similar objects, and the
eigenvalues represent the variance along these directions. We normalize the eigenvalues into
the interval (0, 1) by dividing each eigenvalue λi by the sum of all eigenvalues. Then, the
normalized eigenvalues are viewed as the interaction weights along with the correspond-
ing principal directions. Finally, we project the difference vector between two objects onto
these orthogonal eigenvectors and couple the difference with the corresponding normalized
eigenvalues. Formally, the weighted interaction between two objects is defined as follows.

Definition 3 (Weighted interaction) Let x ∈ Rd be an object in the data set D. Nm
ε (x(t)) is

the ε-Neighborhood of the object x and y ∈ Nm
ε (x(t)). �v1, . . . , �vd and λ1, . . . , λd are the

eigenvectors and eigenvalues by PCA decomposition of the covariance matrix of Nm
ε (x(t)).

The weighted interaction between the object y ∈ Nm
ε (x(t) and the object x , denoted by

WI(y−x), is defined as:

WI(y, x) =
d∑

k=1

λi · sin(proj(�(y, x), �vk)) (7)

where �(y, x) = y − x means the difference vector between y and x , proj (�(y, x), �vi)
means the projection of vector �(y, x) onto �vi . Since the eigenvectors �vi are unit vectors,
therefore,

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 91

Fig. 3 Weighted interaction between two objects

proj(�(y, x), �vi) = (〈�(y, x), �vi 〉) · �vi (8)

where 〈, 〉 means the inner product.

To illustrate the weighted interaction, Fig. 3 gives an example with a two-dimensional data
set. Given an object P , first, the ε-neighborhood of object P with Mahalanobis distance is
obtained. Then, we decompose the covariance matrix of these objects by PCA and obtain the
eigenvectors (�v1, �v2) and eigenvalues (λ1, λ2) respectively. For each interaction with object

P , e.g., Q− P interaction, the difference vector
−→
QP is projected to the first direction �v1 with−−→

Q1P and the second direction �v2, denoted by
−−→
Q2P . The interaction between objects Q and

P is finally determined with λ1 · sin(
−−→
Q1P) + λ2 · sin(

−−→
Q2P).

Finally, the dynamics of each dimension xi of the object x is governed by:

xi (t + 1) = xi (t) + 1

|Nm
ε (x(t))| ·

∑

y(t)∈Nm
ε (x(t))

·
d∑

k=1

λk · sin(proj(i)(�(x(t), y(t)), �vk)) (9)

where proj(i) means the i th dimension of the projected vector. The object x at time step
t = 0 : x(0)(x1(0); · · · ; xd(0)) represents the initial state of the object. The xi (t + 1)
describes the new state value of i th dimension of object x at time point (t + 1).

To determine the termination of the dynamic process, a synchronization-order parameter
r is defined as measuring the degree of synchronization of objects.

Definition 4 (Synchronization-order parameter) The synchronization-order parameter r
characterizing the degree of synchronization is defined as the average movements of objects
over time:

r = 1

N

N∑

i=1

(
1

|Nε(x)|
∑

y∈Nε(x)

WI(y−x)

)
(10)

The value of r decreases when more and more objects synchronize together as time evolves.
The process toward synchronization terminates when r converges, which indicates that there
is no further change of objects.

123

www.manaraa.com

92 J. Shao et al.

3.3 Simulation of the object dynamics

After formulating our interaction model, we can simulate the dynamics of objects to investi-
gate all clusters in arbitrarily oriented subspaces. Generally, the dynamics of objects involve
the following steps:

1. At t = 0, all objects in the data set have their own states (feature vectors).
2. As time evolves (t > 0), for each object x(t), we search its similar objects with Maha-

lanobis distance Nm
ε (x(t)) and then apply PCA to decompose the covariance matrix of

Nm
ε (x(t)) to obtain the corresponding eigenvectors and eigenvalues. The new state of

object x(t) is then determined by Eq. 9.
3. During the process toward synchronization, the order parameter r(t) (Eq. 10) is calculated

to terminate the simulation when r converges.

To illustrate the dynamics of objects according to our interaction model, for the ease of
illustration, a three-dimensional data set is provided as an example. Figure 4a (t = 0) shows
the initial states of objects, where three clusters exist in the data set: a three-dimensional
Gaussian cluster in full dimensions, a two-dimensional linear correlation cluster in arbitrar-
ily oriented subspace and one-dimensional linear cluster in Z axis. When t > 0, for each
object, it starts to interact with similar objects according to the local cluster structure. For rel-
evant dimensions, the object interaction is imposed much higher strength while lower impact
for irrelevant dimensions. For example, in Fig. 4b–c, the objects in the Gaussian cluster grad-
ually move together from all directions in the three dimensions since these objects belong to
a common 3D subspace cluster. We can see that the eigenvalues along with main directions
of these objects (eigenvectors) decomposed by PCA are very similar (λ1 ≈ λ2 ≈ λ3, see
Fig. 4d). Therefore, the object interactions are imposed similar strengths and gradually group
together. This situation is different from objects in the other two clusters. For the objects in
the two-dimensional correlation cluster, the main directions of the cluster structure are not

(a)

(d) (e) (f)

(b) (c)

Fig. 4 Illustration of dynamics of objects. a t = 0, b t = 6, c t = 10, d main directions, e order parameter,
f synchronized clusters

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 93

along with the coordinate axis but arbitrarily oriented. The eigenvalues on the corresponding
eigenvectors decomposed by PCA are thus very different, where (λ1 > λ2 and λ3 → 0).
These cluster objects thereforemainlymove toward two directions (�v1) and (�v2)withweights
λ1 and λ2 respectively (Fig. 4d). Similarly, the one-dimensional linear cluster objects tend
to move toward one direction (�v1). Through such weighted interactions, finally, all cluster
objects synchronize together in the corresponding subspaces (Fig. 4f). During the process
toward synchronization, the synchronization-order parameter will decrease and finally con-
verge (Fig. 4e).

3.4 Synchronized clusters search

After the simulation of dynamics of objects by our interaction model, cluster objects in
arbitrarily oriented subspaces synchronize together. To find these synchronized clusters, the
intuitive way is to find all synchronized phases and corresponding objects. The principle
of our strategy is to consider the subspace search from objects instead of dimensionality.
Specifically, for each object, we investigate whether other objects synchronize with it in any
dimension. If it does not synchronize with any dimension of other objects (with same phase),
this object is viewed as noise. If it synchronizes with some dimensions of other objects, these
synchronized dimensions are regarded as a synchronized subspace and these synchronized
objects are formedas a synchronized cluster.Weextract all synchronized subspaces and assign
synchronized objects in corresponding subspaces.We repeat this process for each object, and
finally we get all synchronized subspaces and corresponding synchronized clusters.

To illustrate the search strategy, let us look at Table 1. Supposing there are 7 objects
with 4 dimensions, after weighted interaction among objects, the final states of objects are
outlined in the left part of Table 1. For each object, we find its synchronized dimensions and
objects. For example, object #1 synchronizes with objects #2 to #4 in dimensions of 1 and 2.
Therefore, a synchronized subspace (1,2) is created and the corresponding objects #1 to #4
are added to a cluster in this subspace. Similarly, object #2 synchronizes with objects #3 and
#4 in dimensions (1,2,4) and a new subspace is thus created. This process is repeated until
all objects are investigated. In addition, since object #7 does not synchronize with any other
object in any dimension, it is viewed as noise in the full-dimensional space.

Once we detect all synchronized clusters, we can further determine their dimensionality.
The reason is that objects in synchronized clusters moving together do not need to be parallel
with axis but arbitrarily orientated of the synchronized cluster objects. Therefore, if a cluster
is located in an axis-parallel subspace, the synchronized subspace is the exact subspace.

Table 1 Illustration of the
subspace search strategy

Obj. d1 d2 d3 d4 Syn. dim. New subs. Cluster

1 0.1 0.2 0.1 0.3 1, 2 (1, 2) (1 2 3 4)

2 0.1 0.2 0.2 0.2 1, 2, 4 (1, 2, 4) (2 3 4)

3 0.1 0.2 0.7 0.2 1, 2, 3, 4 (1, 2, 3, 4) (3, 4)

4 0.1 0.2 0.7 0.2 1, 2, 3, 4 – –

5 0.3 0.4 0.3 0.3 3 (3) (5, 6)

6 0.9 0.5 0.3 0.1 3 – –

7 0.7 0.6 0.4 0.5 Null – Noise

123

www.manaraa.com

94 J. Shao et al.

Fig. 5 Pseudocode of the ORSC algorithm

However, if a cluster is embedded in an arbitrarily oriented subspace, the synchronized
subspace only stands for the original feature space that these clusters accommodated.

Definition 5 (Dimensionality of a synchronized cluster) Let S ⊆ D be a synchronized
cluster and � = V EV T , V = λ1, . . . , λd be the eigenvalues of S in descending order.
Given a δ ≈ 0, the dimensionality of S w.r.t δ is η if d − η eigenvalues of S are close to
zero (Φ(λi) ≤ δ and Φ(λi) = λi/λ1), which is denoted by DimSynCluη

δ .

Finally, the Pseudocode of the ORSC Algorithm is illustrated in Fig. 5.

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 95

(a) (b)

Fig. 6 Impact of parameter setting for clustering

3.5 Parameter setting

To simulate the dynamics of objects, an interaction range (ε) needs to be specified in our
interaction model. The question is: How to determine the ε value and how does the clus-
tering results change when the ε value is adjusted? In order to generate a stable interaction
among objects, a heuristic way is to use the average value of the k-nearest neighbor distance
determined by a sample from the data set for a small k. Figure 6a shows a simple data set
which consists of 2 clusters plus outliers. We start with a very small value and then gradually
increase this value to see the change of clustering results. With different values for parameter
ε, we compute the number of clusters which are detected.We can see that the same clustering
results (2 clusters) are obtained with a fairly long stable range (see Fig. 6b). In contrast to
other subspace clustering algorithms, the parameter of our algorithm is much more flexible
and more robust to noise. The reason is that our clustering is a dynamic process, where each
object moves during the process toward synchronization. With a small interaction range,
in the beginning, a few objects interact with each other. But after several time steps, these
objects in a cluster will gradually move closer and thus more and more objects can interact
with each other and finally synchronize together. For relative larger interaction range, the
only difference is that more objects interact with each other at the beginning and thus tend
to synchronize much faster. For other established subspace clustering algorithms, such as
ORCLUS [3], it is required to specify the dimensionality of clusters and also the number of
clusters in this embedded subspaces, which are usually unknown beforehand. This problem
usually exists in other popular algorithms, such as 4C and Curler. For ORSC, after dynamic
clustering, all objects in a cluster in arbitrary subspace will synchronize together via the
weighted nonlinear interaction. Afterward, we can search all embedded potential clusters by
simply search all synchronized phases and corresponding objects (cf. Sect. 3.4).

4 Scaling up synchronization-based subspace clustering to massive data

The proposed synchronization-based subspace clustering allows for an efficient subspace
search; however, like most established subspace clustering algorithms, it still does not scale

123

www.manaraa.com

96 J. Shao et al.

(a) (b)

Fig. 7 Synchronization-based subspace clustering by random partitioning. a Random data partitioning.
b Synchronization-based data representation

well with the number of observations (i.e., O(N 2)). To uncover the embedded subspace
clusters on large data sets containing millions of objects, a simple yet effective strategy:
divide-and-conquer, has been further applied in this study. With this simple strategy, the
subspace clustering on large-scale data is replaced by clustering on each part separately. We
will demonstrate that the divide-and-conquer concept with entropy-based data partitioning
fits to synchronization-based subspace clustering well due to its unique local and dynamic
clustering fashion.

For illustration, Fig. 7 provides a simple example, where objects with red color represent
one data partition while objects with black color indicate another partition. By dynamic
clustering, partition one (red color) is represented by two new synchronized objects (red
triangle markers) and one temporary outlier object (red circle). Similarly, partition two (black
color) is replaced by two new synchronized objects (black triangles) and two outlier objects
(black circles). Finally, the new data set has four new synchronized objects and three outlier
objects (Fig. 7b). It is intuitive to observe that the global cluster structure of the original
data set is preserved in the new generated data set. By clustering on the new data set, we
can finally identify two clusters and two outlier objects successfully. The desirable property
of local structure preservation is due to the salient features of our synchronization-based
clustering, whose cluster formation is driven by the local data structure, and all objects in a
cluster dynamicallymove together (cf. Fig. 4). However, for synchronization-based subspace
clustering, the interaction directions are dependent on the local data structure (cf. Sect. 3.2.2).
If the partitioning largely destroys the local data topology, the interaction directions and
weights tend to be different to those on whole data set. Although the changes are happening
in local way, the quality of clusteringmay still be affected. Therefore, to alleviate the potential
effects, an entropy-based data partitioning strategy is proposed.

4.1 Entropy-based data partitioning

To efficiently uncover embedded clusters in any subspaces building upon the concept of
divide-and-conquer, we expect to have a good data partitioning which has no or little effect
on clustering. Hence, we apply a heuristic way by information entropy, a measure for the
irregularity of information content. The basic idea is to compute the entropy for the data of
each dimension to determine whether this dimension is suitable for partitioning or not. If the
data in one dimension are more randomly distributed (e.g., uniform distribution), it tends to
be more difficult to yield a good partitioning. As the entropy measures the irregularity of

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 97

Fig. 8 Illustration of the selection of partitioning dimensions

data, the entropy will be higher if the data are more uniformly distributed. Namely, the higher
the entropy of a certain dimension, the worse it is for data partitioning as it will destroy the
data locality. Take Fig. 8 as an example. Here, we have a two-dimensional data consisting
of three clusters. By observing the data distribution for each dimension, it is intuitive to see
that the data locality is much better preserved by splitting the data along the dimension of
lower entropy. Formally, we compute the entropy (Shannon entropy) for the data on each
dimension as follows.

entropy(Dj) = −
m∑

i

p(xi) log2 p(xi), (11)

where Dj indicate the j th dimensional data, m is the number of bins for constructing a
histogram on this dimension, and m = 10 in this study, p(xi) is the probability of the data
points to fall into the i th bin.

Generally, the entropy-based partitioning involves the following stages. First, we compute
the entropy for the data on each dimension according to Eq. 11. Afterward, the entropy values
for all dimensions are ordered, and the dimensions with low entropy values will be selected
to split the data into two parts at each time. If the data set is still too large, the process is
repeated for each dimension again until each data partition is small enough for clustering.
Using entropy-based data partitioning, the data locality is more likely to be maintained and
therefore the quality of clustering is preserved.

4.2 Iterative dynamic clustering

Building upon the concept of divide-and-conquer and entropy-based data partitioning strat-
egy, ORSC allows handling large-scale data by partitioning them into thousands of subsets
and clustering each separately. To distinguish this approach from the original ORSC algo-
rithm, we refer to it as Parallel ORSC (PORSC). By performing subspace clustering on
each subset, the data can be further represented by a set of synchronized objects, and each
of which belongs to a specific subspace. New data sets can be generated by combining all

123

www.manaraa.com

98 J. Shao et al.

the synchronized objects which are hosted in the same subspace. Specifically, the PORSC
algorithm involves the following steps.

1. Data partitioning The original data set is split into many small subsets (with fixated size,
i.e., pSize) based on the strategy of entropy-based data partitioning.

2. Dynamic clustering Simulate the object dynamics according to the weighted interaction,
and finally the synchronized clusters embedded in any subspace can be identified (cf.
Sect. 3).

3. New data generation Collect all synchronized objects in every subspace from all subsets
to form new data sets (each subspace corresponds to a new data set). Here, each subspace
will host its own objects respectively.

4. Final clustering We perform the final clustering on each new data set. Here, only the
clusters in the full embedded subspace are investigated.

4.3 Complexity analysis

For the simulation of the dynamical process of objects at each time step, we need to search
the ε-neighborhood of each object with Mahalanobis distance. The covariance matrix with
Euclidean distance computation can be evaluated in O(N · d) time. The covariance matrix
is then used to calculate the Mahalanobis distance, and the time complexity approximately
requires O(d3) time. We further use PCA to decompose the covariance matrix with Maha-
lanobis distance, and it thus requires O(d3) time. For the interaction of each object, it requires
O(d3) time. Therefore, for all objects together, the simulation of dynamics at one time
step is O(N 2 · d + N · d3). If there exists an efficient index, the complexity reduces to
O(T · N log N · d + log N · d). For all time steps toward synchronization, the time complex-
ity of objects’ simulation is O(T · (N 2 · d + N · d3)) in worst case. T is the number of time
steps. In most cases, T is small with 5 ≤ T ≤ 20.

For the time complexity of subspaces and the corresponding clusters search, the most
bottom-up establishing algorithmsof subspace clustering needO(2d) time. For our search,we
do not need iterate all subspaces but finding all synchronized subspaces by investigating the
synchronized dimensions of each object. Therefore, the time complexity reduces to O(N 2 ·d).
Finally, the time complexity of our algorithm in worst case is O(T ·(N 2 ·d+N ·d3)+N 2 ·d).

Relying on the entropy-based data partitioning, the running time is significantly reduced
due to the synchronization-based data representation and the divide-and-conquer strategy.
The dynamic clustering for each partitioning data is O(T · (N 2

p · d + Np · d3) + N 2
p · d),

where Np is the fixed size number of objects for each partition data and Np
 N . The time
complexity for all partitions is thus O(pl · T · (N 2

p · d + Np · d3) + N 2
p · d), where pl is the

number of partitions.

5 Relationship to other clustering paradigms

5.1 Synchronization-based clustering algorithms

Following the common concept, several synchronization-based clustering algorithms [10,
18,22,30,33,37] have been introduced recently. The key idea of clustering approaches by
synchronization (e.g., in Sync [10]) is to view each data object as a phase oscillator, the
feature vector of an object as its phase, and simulate the dynamical behaviors of the objects
over time. By the interaction with similar objects, the phase of an object gradually aligns

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 99

with its neighborhood, resulting in a nonlinear object movement driven by the local cluster
structure. Finally, the objects in a cluster are synchronized together and have the same phase.
These algorithms have demonstrated attractive properties compared to many existing clus-
tering algorithms. Beyond that, synchronization-based clustering also allows for a natural
hierarchical analysis [29] and handling large data sets via simple yet effective divide-and-
conquer strategy [30]. All these algorithms aim at discovering the cluster structure in the
full-dimensional data space. The proposed algorithm, ORSC, aims at identifying clusters in
subspaces of high-dimensional large-scale data sets, which is a very difficult task for existing
synchronization-based clustering algorithms. For this purpose, we introduce a new model to
support weighted interaction depending on the feature relevance. Beyond that, the parallel
version of ORSC is further introduced to support scalable subspace clustering. Therefore,
equipped with the benefits of traditional synchronization-based clustering and its scalability,
ORSC shows its superiority over the state-of-the-art algorithms in both effectiveness and
efficiency aspects (cf. Sect. 6).

5.2 Other dynamic clustering algorithms

For synchronization-based clustering algorithms, one salient feature is that cluster formation
is driven by the local data structure, and all objects in a cluster dynamically move together.
The idea is related to affinity propagation algorithms [13,14], which take as input measures of
similarity between pairs of data points and simultaneously consider all data points as potential
exemplars. Real-valued messages are exchanged between data points until a high-quality
set of exemplars and corresponding clusters gradually emerges. Inspired by the physical
phenomena, gravitation-based clustering algorithms [8,19,26] have been proposed which
simulate how particles (data points) group together driven by the gravity force. All these
algorithms share a similar schema: exchange values between similar data objects based on a
given interactionmodel. Synchronization-based clustering algorithms are distinguished from
other dynamic clustering algorithms by their physical mechanism and the corresponding
interaction model. The potential advantages synchronization-based clustering algorithms are
twofolds: (1) the dynamics of objects are driven by the local topological structure; therefore,
the derived clusters allow reflecting its intrinsic cluster structure. Compared to state-of-the-
art algorithms, synchronization-based clustering algorithms tend to find arbitrarily shaped
clusterswith arbitrary size and (2) Local data structural preservation.Unlike other algorithms,
the clustering results by synchronization-based can be further clustered as they well preserve
the local data structure [30]. It thus supports iterative clustering and allows performing
clustering on large data sets.

6 Experimental evaluation

To extensively study the performance of ORSC and the fast implementation PORSC, we per-
form experiments on several synthetic and real-world data sets. We compare the performance
of ORSC to synchronization-based clustering algorithm Sync [10], the dynamic clustering
algorithm Affinity Propagation [13], and the subspace clustering algorithms: ORCLUS [3],
4C [9], and Curler [34].We select these particular algorithms because they are representatives
of different algorithmic paradigms: ORCLUS is a K-means style iterative partitioning algo-
rithm; 4C is a local density-based method; Curler tries to find nonlinear correlation clusters
based on EM clustering. We implemented ORSC and PORSC in Java. The source code of
Curler is obtained from the authors, and the Java source codes for other comparison algo-

123

www.manaraa.com

100 J. Shao et al.

rithms are available in the ELKI package (http://elki.dbs.ifi.lmu.de/). All experiments have
been performed on a workstation with 2.4 GHz CPU and 32 GB RAM. Beyond that, we also
evaluate the performance of the fast implementation of ORSC (called PORSC in this paper)
and compare it with the original ORSC algorithm on both effectiveness and efficiency.

Moreover, we report two established measures for cluster quality [35]: normalized mutual
information (NMI), and adjusted mutual information (AMI) to evaluate different cluster-
ing results. For both measures, higher values represent better clustering performance. We
also provide precision (P) and recall (R) as validity measures to analyze each individual
cluster.

6.1 Effectiveness

6.1.1 Synthetic data

We start the evaluation of ORSCwith several synthetic data sets to facilitate presentation and
demonstrate its benefits. Figure 9 displays the clustering results on a three-dimensional syn-
thetic data with all comparing subspace clustering algorithms. The data consist of 11 clusters
of different dimensionality, object density, and correlation strength plus noise (Fig. 9a).
For ORSC with parameter ε = 0.06, it successfully detects all these correlation clus-
ters, including five one-dimensional linear correlation clusters, two two-dimensional linear

Fig. 9 Comparison with different algorithms on a 3D synthetic data. a ORSC, b ORCLUS, c 4C, d Curler

123

http://elki.dbs.ifi.lmu.de/

www.manaraa.com

Synchronization-based scalable subspace clustering of… 101

plane clusters, two two-dimensional nonlinear clusters, and two three-dimensional clusters
(Fig. 9a). ORCLUS requires the number of cluster K and the average subspace dimension-
ality l as input parameter. We specify K = 11 and obtain the best results with l = 3, which
are indicated in Fig. 9b. Figure 9c displays the best clustering results of 4C with parameters
ε = 0.03, MinPts = 6 and λ = 3. For Curler, we use all default parameter values which are
suggested by authors. It obtains as many as 150 clusters (Fig. 9d). For better investigating
different clustering results, we focus on the detailed view of the 2D linear plane cluster and
four 1D linear clusters in the center of the data set (cf. Fig. 10). It is obvious that ORSC out-
performs the competitors, where all correlation clusters are successfully detected with high
precision and recall. The evaluation of the clustering results is further illustrated in Table 4.

To further evaluate our algorithm ORSC, we generate five high-dimensional data sets. In
each data set, several clusters are hidden in subspaces of varying dimensionality plus noise.
Detailed description of the five data sets is shown in Table 2. For comparison, we check
whether each algorithm can detect these clusters with suitable parameters. We report its pre-
cision and recall for each cluster. The results with different subspace clustering algorithms are
depicted in Table 3. In all these data sets, ORSC finds the synthetic clusters in corresponding
subspaces with both high recall and precision. In contrast to the comparing algorithms, there
is no need to specify the subspace dimensionality and all interesting subspace clusters are
detected. For 4C and ORCLUS, we manually specify the subspace dimensionality although

Fig. 10 Detailed view of
clustering results with different
algorithms on part of 3D
synthetic data

(a)

(b) (c)

(d)

Table 2 Detailed information of
high-dimensional synthetic data
sets

Dimensionality Number of
clusters

Dimension of
each cluster

DS1 5 1 3

DS2 10 1 5

DS3 15 2 10, 5

DS4 20 2 10, 10

DS5 30 3 20, 15, 10

123

www.manaraa.com

102 J. Shao et al.

Ta
bl

e
3

C
om

pa
ra
tiv

e
ev
al
ua
tio

n
of

di
ff
er
en
ts
ub

sp
ac
e
ap
pr
oa
ch
es

on
hi
gh

-d
im

en
si
on

al
sy
nt
he
tic

da
ta
se
ts

D
at
a

T
ru
e
cl
us
te
rs
fo
un

d
by

O
R
C
L
U
S

4C
C
ur
le
r

O
R
SC

PO
R
SC

D
S1

1
(D

im
.:
3)

1
(D

im
.:
3)

1
(D

im
.:
3)

1
(D

im
.:
3)

1
(D

im
.:
3)

(P
=

32
.7
%
;
R

=
91

.2
%
)

(P
=

10
0%

;
R

=
10

0%
)

(P
=

99
.0
%
;
R

=
20

.4
%
)

(P
=

10
0%

;
R

=
97

.0
%
)

(P
=

99
.6
%
;
R

=
99

.4
%
)

D
S2

1
(D

im
.:
5)

1
(D

im
.:
5)

1
(D

im
.:
5)

1
(D

im
.:
5)

1
(D

im
.:
5)

(P
=

27
.8
%
;
R

=
62

.2
%
)

(P
=

10
0%

;
R

=
94

.2
%
)

(P
=

48
.4
%
;
R

=
11

.8
%
)

(P
=

10
0%

;
R

=
97

.4
%
)

(P
=

10
0%

;
R

=
98

.2
%
)

D
S3

2
(D

im
.:
10
,5
)

1
(D

im
.:
10
)

2
(D

im
.:
10
,5
)

2
(D

im
.:
10
,5
)

2
(D

im
.:
10
,5
)

(P
=

16
.9
,7

4.
4%

)
(P

=
10

0%
,
R

=
99

.6
%
)

(P
=

14
.5
,1
2.
0%

)
(P

=
10

0,
99

.6
%
)

(P
=

10
0,
10

0%
)

(R
=

14
.0
,6
1.
6%

)
(R

=
19

.3
,1

6.
0%

)
(R

=
99

.6
,1

00
%
)

(R
=

10
0,
10

0%
)

D
S4

2
(D

im
.:
10
,1
0)

2
(D

im
.:
10
,1
0)

2
(D

im
.:
10
,1
0)

2
(D

im
.:
10
,1
0)

2
(D

im
.:
10

,1
0)

(P
=

17
.9
,1

00
%
)

(P
=

10
0,
10

0%
)

(P
=

12
.5
,1
00

%
)

(P
=

10
0,
99

.6
%
)

(P
=

10
0,
99

.6
%
)

(R
=

13
.2
,7
4.
0%

)
(R

=
10

0,
10

0%
)

(R
=

12
.5
,1

00
%
)

(R
=

10
0,
99

.6
%
)

(R
=

10
0,
10

0%
)

D
S5

3
(D

im
.:
20
,1
5,
10
)

1
(D

im
.:
20
)

3
(D

im
.:
20
,1
5,
20
)

3
(D

im
.:
20
,1
5,
10
)

3
(D

im
.:
20
,1
5,
10
)

(P
=

21
.7
,1

2.
3,
13

.2
%
)

(P
=

10
0%

;
R

=
98

.5
%
)

(P
=

10
0,
99

.5
,7
6.
9%

)
(P

=
10

0,
98

.5
,9
9.
6%

)
(P

=
10

0,
10

0,
10

0%
)

(R
=

10
0,
67

.5
,7
2.
5%

)
(R

=
99

.0
,1

00
,5
%
)

(R
=

10
0,
99

.5
,1

00
%
)

(R
=

98
.5
,1
00

,1
00

%
)

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 103

Fig. 11 Clusters found by ORSC on the Ecoli data set (ε = 0.25)

Table 4 Evaluation on different
data sets

Methods Synthetic data Ecoli data Wine data

NMI AMI NMI AMI NMI AMI

ORSC 0.981 0.980 0.682 0.670 0.701 0.695

PORSC 0.943 0.943 0.672 0.657 0.686 0.680

Sync 0.943 0.943 0.640 0.629 0.696 0.691

AP 0.674 0.665 0.546 0.539 0.431 0.425

4C 0.830 0.829 0.338 0.328 0.474 0.469

ORCLUS 0.598 0.596 0.452 0.430 0.191 0.182

Curler 0.583 0.561 0.060 0.049 0 0

it is difficult to know in real world. 4C performs very well on the first two low-dimensional
data sets. But it fails to find five-dimensional cluster in 15-dimensional data set. This is also
the same for the fifth data set, where it cannot find the embedded 10-dimensional cluster
and 15-dimensional cluster because both of them are not dense enough. The algorithm of
ORCLUS is sensitive to noise, and most noise objects are included in the detected clusters.
In addition, ORCLUS tends to merge these subspace clusters together resulting in low preci-
sion. Similarly, the algorithm Curler is sensitive to noise and cannot yield good results for all
data sets. However, in contrast to ORCLUS, it tends to split true clusters into several distinct
clusters and the obtained clusters usually lack in recall.

123

www.manaraa.com

104 J. Shao et al.

Table 5 ORSC clustering results on wine data

Cluster ID Type 1 Type 2 Type 3 Precision (%) Recall (%)

1 58 3 0 95.2 98.3

2 0 53 0 100 73.6

3 0 5 48 90.6 100

4 0 4 0 100 5.6

6.1.2 Small real-world data sets

In the following, we evaluate the performance of ORSC on several small-to-large real-world
data sets which are publicly available at the UCI machine learning repository.

Ecoli data This Ecoli data deriving from a study on protein location consists of 336 instances.
It includes eight classes with are highly unbalanced having from 2 to 142 objects per class.
Each instance is described by 7 attributes. ORSCdetects 6meaningful clusters for this data set
which results in an NMI of 0.682. Each cluster is mainly represented as one type, see Fig. 11
in detail. Cluster 1 is composed of 147 instances and 140 out of them belong to cytoplasm,
P = 95.24% and R = 97.90%. Cluster 2 includes 56 instances and mainly represents
periplasm with P = 85.71% and R = 92.31%. The type of inner membrane without signal
sequence is identified by cluster 3 and cluster 4 together. Similarly, the cluster 5 and cluster
6 represent the type outer membrane and outer membrane lipoprotein with high precision
92.86 and 100% recall, respectively. Moreover, with the entropy-based data partition, the fast
implementation PORSC yields similar clustering results with an interaction range ε = 0.3
and pSize = 200 even on the small data set, which results in a good performance of NMI
= 0.672. The slight decrease of clustering performance is due to the fact that the local data
structure is slightly affected by the partition procedure, although the entropy-based strategy
is provided to alleviate this effect. However, the results (cf. Table 4) demonstrate that the
performance of PORSC is very close to ORSC, and the running time decreases significantly
(cf. Sect. 6.1.3). For Sync, although it derives from the same concept, its performance isworse
than ORSC. The main reason is that ORSC allows characterizing the local data structure for
interaction in a better way. Affinity propagation produces the best result (NMI = 0.546)
when we specify the corrected number of clusters manually. For 4C algorithm, it obtains best
results with parameters MinPts = 6, ε = 0.15 and λ = 7, which results NMI = 0.338. It
detects 6 clusters, but many instances are wrongly clustered. ORCLUS obtains much better
results (NMI = 0.452) with parameters k = 8 and l = 7. However, like 4C, many instances
are wrongly assigned. The algorithm of Curler has a bad clustering result with NMI= 0.060,
which cannot predict the protein location effectively. The evaluation of the clustering results
is further illustrated in Table 4.

Wine data The well-knownwine data set is the result of a chemical analysis of wine grown in
the same region in Italy but deriving from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types ofwine. The class distribution
is as follows: Type1: 59; Type2: 71, Type3: 48. Table 5 gives the clustering results of ORSC
with parameter ε = 0.6. It detects 4 clusters and 8 instances are viewed as noise. Three
main detected clusters match with corresponding wine types with high precision and recall.
In detail, Cluster 1 includes nearly all instances (58 out of 59 instances) of Type 1 plus 3

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 105

Fig. 12 Clusters found by
parallel ORSC on the cover type
data set (ε = 0.7)

instances of Type 2. Fifty-three instances in Cluster 2 completely belong to Type 2. Cluster 3
consists of all instances of Type 3. In addition, the Cluster 4 includes four instances of Type
2. It is clear that ORSC can discover interesting patterns of the data set effectively. Similarly,
PORSC detects four clusters with high value of recall and precision, and 19 instances are
identified as outliers, resulting inNMI= 0.686 and Pur.= 0.955.With the same concept, Sync
finds three clusters with high value of NMI = 0.696. For affinity propagation, it produces
three clusters while the quality of clusterings are not promising (NMI = 0.431). For 4C
with parameter MinPts = 6, ε = 0.5 and λ = 13, it discovers 2 clusters and 34 instances
are regarded as noise (NMI = 0.474). As many instances of the two clusters are wrongly
clustered, 4C is difficult to distinguish the three types of wine. The algorithm of ORCLUS
cannot obtain good clustering results (NMI = 0.191) although we manually specify the
number of clusters with parameters k = 3 and l = 13. For Curler, it even cannot find any
correlation cluster for the data set with different parameters. All instances are regarded as
one single cluster. The evaluation of these clustering results is further indicated in Table 4.

6.1.3 Large-scale real-world data sets

Beyond the small real data sets, we further evaluate the performance of Parallel ORSC on
several large-scale real-world data sets which are publicly available at the UCI machine
learning repository.

Cover type data The Covtype data set containing 581,012 instances describes seven forest
cover types on a 3030 meter grid with 54 different geographic measurements. In contrast to
existing subspace clustering algorithms, Parallel ORSC allows handling large-scale data sets.
Here, 33 clusters are found and 9344 instances are viewed as noise. The detailed information
of each single cluster is further demonstrated in Fig. 12. We can observe that our method
allows identifying the high-quality clusters.

Shuttle The shuttle data set contains 58,000 instances, and each instance has nine attributes.
All the instances are labeled into seven classes, most of the them belong to the first class (Rad
Flow), which contains 45,586 instances. Parallel ORSC identifies 20meaningful clusterswith
NMI = 0.365 and Pur = 0.843. One hundred twenty-nine instances are identified as outliers.
The largest cluster found by Parallel ORSC contains 48117 instances which mainly belong
to the first class, with a high precision and recall of 81.3, 85.8%, respectively. Among the
identified 19 clusters, 14 of themare foundwith perfect purity,whichmeans all the clusters are
rightly identified. Only two of the clusters are reported with relatively lower purity, because
some instances are wrongly clustered to other classes (i.e., cluster 2 contains only 2 instances
which identified as the class (Bpv Open) and (Rad Flow), respectively).

123

www.manaraa.com

106 J. Shao et al.

Table 6 Performances on real
data sets

Data #Obj #dim #Cluster Parallel ORSC

NMI Pur

Shuttle 58000 9 7 0.365 0.843

Covtype 581012 54 7 0.158 0.590

Network intrusion 4898431 34 23 0.839 0.990

Network intrusion The network intrusion data has 4,898,431 instances recording 2weeks
TCP dump data for a local area network simulating a true Air Force environment. Each
instance has 42 attributes and 32 numerical attributes of them are chosen for clustering. All
of the instances belong to 23 classes, while most of them concentrate on three main classes.
Parallel ORSC finds eight clusters with high quality (e.g., in terms of NMI = 0.839 and Pur
= 0.991). Specifically, seven clusters have perfect purities of values of 1 or very close to
1 (i.e., 0.9787, 0.9999 and 0.9989, respectively), and the worst cluster still has a purity of
0.902.

The detailed results of Parallel ORSC in terms of different evaluation measures on all real
sets are shown in Table 6. From the table, we can see that Parallel ORSC not only allows for
an efficient clustering, but also preserving the properties of ORSC.

6.2 Efficiency

The efficiency of our algorithm is evaluated by comparing the runtime of both ORSC and
the Parallel ORSC (PORSC) with state-of-the-art algorithms. Results show that ORSC is the
fastest when dealing with large and high-dimensional data sets.

Comparison with state-of-the-art algorithms Fig. 13a shows the results of runtime experi-
ments for a 3D synthetic data set varying numbers of objects in the range of 500 to 30,000.
ORCLUS and ORSC scale nearly linear against the size of the data set, while 4C scales
quadratically. The runtime of Curler is rather high for large number of objects, and thus, only
the runtime for maximal 10,000 objects is displayed. For comparison of the scalability in the
dimensionality d , data sets consisting of 2000 objects with dimensionality ranging from 5 to
50 are generated. Figure 13b displays the results of runtime against dimensionality. Since all
algorithms are involvedwith PCA, they scale similar with the dimensionality. ORCLUS is the
fastest approach, but its effectiveness is not satisfying (cf. Sect. 6.1) and ORSC outperforms
4C and Curler. In summary, ORSC scales very well against the number of objects as well as
dimensionality.

Scaling up experiments In this section, we further evaluate the speedup of the fast ORSC
against original ORSC to demonstrate its scalability.

To assess the scalability of PORSC with respect to database size, we first generate five
synthetic data sets with different database sizes from one thousand objects to ten million
objects). Figure 14a shows the runtime of PORSC with respect to different database sizes.
It indicates that the larger the database size, the higher speed-up of the clustering (e.g.,
approximately 18 and 650 times faster for the 1000 and 10,000 objects, respectively). Unlike
other state-of-the-art subspace clustering algorithms, PORSC is able to cluster one million
data points in only 5 min.

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 107

Moreover, to investigate the scalability of PORSC with respect to dimensionality, five
synthetic data sets containing four thousand objects with different dimensions ranging from
20 to 100 are generated. In Fig. 14b, PORSC shows a nearly linear running time against
the number of dimensions. Meanwhile, the benefits of parallel implementation of ORSC are
more pronounced with increasing dimensionality.

6.3 Impact of parametrization

In this section, we perform sensitivity analysis for PORSC with respect to the interaction
range ε and partition size on the real-world cover type data set.

Partition size We assess the effect of the partition size on subspace clustering by using
different settings ranging from 200 to 1000. The results in Fig. 15a demonstrate that the
performance of PORSC is robust to the partition size (psize).

Interaction range To evaluate the impact of interaction range on clustering, we preform
PORSC on cover type data set with different interaction range ranging from 0.1 to 0.4
(fixating psize = 200). Figure 15b demonstrates that the parametrization of interaction range
is flexible and easy to specify as the clustering results are not very sensitive to it.

(a) (b)

Fig. 13 Scalability of ORSC against the database size and dimensionality. a Database size. b Dimensionality

(a) (b)

Fig. 14 Scalability of PORSC versus ORSC w.r.t. dimensions and database sizes. a Dimensions. b Database
sizes

123

www.manaraa.com

108 J. Shao et al.

Fig. 15 Effect of the partition size and interaction range on clustering. a Partition size. b Interaction range

7 Discussion and conclusions

In this paper, we introduce ORSC, a novel subspace clustering algorithm based on syn-
chronization. we consider each dimension of the object as a phase oscillator and simulates
each object’s dynamics according to our proposed interaction model. Through the weighted
nonlinear interaction among objects, all correlated objects hidden in arbitrarily oriented sub-
spaces can be synchronized together. The search of these synchronized clusters is transformed
into the problem to find synchronized phases. Our extensive experiments demonstrate that
the ORSC algorithm shows several desirable properties: (a) ORSC can naturally detect arbi-
trarily oriented subspace clusters driven by the true topological structure of the data without
assuming any data distribution. (b)ORSC is robust against noise points and outliers since they
are difficult to synchronize with other objects. (c) ORSC is flexible and easy to parameterize.
In contrast to previous methods, there is no need to specify the subspace dimensionality,
and all interesting subspace clusters are detected. (d) ORSC outperforms most comparison
methods in terms of runtime efficiency and is highly scalable to large and high-dimensional
data sets.

In ongoing and future work, we focus on exploiting automatical parametrization tech-
niques for our interaction model based on information-theoretical principle. In addition, we
want to closely investigate the movement patterns of objects and extend this idea to streaming
data.

Acknowledgements The research was supported partially by the National Natural Science Foundation of
China (Grant Nos. 61403062, 61433014, 41601025), China Postdoctoral Science Foundation (2014M552344,
2015M580786), Science-Technology Foundation for Young Scientist of SiChuan Province (2016JQ0007) and
Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2014J053, ZYGX2014J091).

References

1. Aeyels D, De Smet F (2008) A mathematical model for the dynamics of clustering. Phys D Nonlinear
Phenom 273(19):2517–2530

2. Aggarwal CC, Wolf JL, Yu PS et al (1999) Fast algorithms for projected clustering. ACM SIGMOD
international conference on management of data, pp 61–72

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 109

3. Aggarwal CC, Yu P S (2000) Finding generalized projected clusters in high dimensional spaces. ACM
SIGMOD international conference on management of data, pp 70–81

4. Agrawal R, Gehrke JE, Gunopulos D et al (1998) Automatic subspace clustering of high dimensional
data for data mining applications. ACM SIGMOD international conference on management of data, pp
94–105

5. Ankerst M, Breunig MM, Kriegel HP et al (1999) Optics: ordering points to identify the clustering
structure. ACM SIGMOD international conference on management of data, pp 49–60

6. ArenasA,Diaz-GuileraA, Perez-VicenteCJ (2006) Synchronization reveals topological scales in complex
networks. Phys Rev Lett 96(11):1–4

7. Arenas A, Diaz-Guilera A, Kurths J et al (2008) Synchronization in complex networks. Phys Rep 469:93–
153

8. Bahrololoum A, Nezamabadi-pour H, Saryazdi S (2015) A data clustering approach based on universal
gravity rule. Eng Appl Artif Intell 45:415–428

9. Böhm C, Kailing K, Kröger P et al (2004) Computing clusters of correlation connected objects. ACM
SIGMOD international conference on management of data, pp 455–466

10. Böhm C, Plant C, Shao J et al (2010) Clustering by synchronization. ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp 583–592

11. Cheng CH, Fu AW, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. ACM
SIGKDD international conference on knowledge discovery and data mining, pp 84–93

12. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans
Pattern Anal Mach Intell 35(11):2765–2781

13. Frey B, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976
14. Givoni I, Chung C, Frey B (2011) Hierarchical affinity propagation. 27th conference on uncertainty in

artificial intelligence, Barcelona, Spain
15. Goil S, Nagesh H, Choudhary A (1999) MAFIA: efficient and scalable subspace clustering for very large

data sets. ACM SIGKDD international conference on knowledge discovery and data mining, pp 443–452
16. GünnemannS, FaloutsosC (2013)Mixedmembership subspace clustering. IEEE international conference

on data mining, pp 221–230
17. Hinneburg A, Keim DA (1999) Optimal grid-clustering: towards breaking the curse of dimensionality in

high-dimensional clustering. International conference on very large data bases, pp 506–517
18. Huang J, Sun H, Kang J et al (2013) ESC: an efficient synchronization-based clustering algorithm. Knowl

Based Syst 40:111–122
19. Indulska M, Orlowska M (2002) Gravity based spatial clustering. ACM international symposium on

advances in geographic information systems, pp 125–130
20. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Upper Saddle River
21. Kailing K, Kriegel HP, Kröger P (2004) Density-connected subspace clustering for high-dimensional

data. SIAM international conference on data mining, p 4
22. KimCS, Bae CS, TchaHJ (2008) A phase synchronization clustering algorithm for identifying interesting

groups of genes from cell cycle expression data. BMC Bioinform 9:1
23. Kuramoto Y(1975) Self-entrainment of a population of coupled nonlinear oscillators. In: Araki H (ed)

Proceedings of the international symposium on mathematical problems in theoretical physics. Lecture
notes in physics. Springer, New York, pp 420–422

24. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin
25. Liu J, Wang W (2003) Op-cluster: clustering by tendency in high dimensional space. IEEE international

conference on data mining, pp 187–194
26. Oyang Y, Chen C, Yang T (2001) A study on the hierarchical data clustering algorithm based on gravity

theory. Principles of data mining and knowledge discovery, pp 350–361
27. Procopiuc CM, Jones M, Agarwal PK et al (2002) AMonte Carlo algorithm for fast projective clustering.

ACM SIGMOD international conference on management of data, pp 418–427
28. Shao J (2012) Synchronization on data mining: a universal concept for knowledge discovery. LAP LAM-

BERT Academic Publishing, Saarbrücken
29. Shao J, He X, Böhm C et al (2013) Synchronization-inspired partitioning and hierarchical clustering.

IEEE Trans Knowl Discov Data Eng 25(4):893–905
30. Shao J, Yang Q, Dang H et al (2016) Scalable clustering by iterative partitioning and point attractor

representation. ACM Trans Knowl Discov Data 11(1):5
31. Shao J, Ahmadi Z, Kramer S (2014) Prototype-based Learning on concept-drifting data streams. ACM

SIGKDD international conference on knowledge discovery and data mining, pp 512–521
32. Shao J, Böhm C, Yang Q et al (2010) Synchronization based outlier detection. ECML/PKDD 2010, pp

245–260

123

www.manaraa.com

110 J. Shao et al.

33. Shao J, HeX,YangQ et al (2013) Robust synchronization-based graph clustering. Pacific-Asia conference
on knowledge discovery and data mining, pp 249–260

34. Tung AKH, Xu X, Ooi BC (2005) Curler: finding and visualizing nonlinear correlated clusters. ACM
SIGMOD international conference on management of data, pp 467–478

35. Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: is a correc-
tion for chance necessary?. In: The 26th international conference on machine learning, pp 1073–1080

36. Wang H, Wang W, Yang J et al (2002) Clustering by pattern similarity in large data sets. ACM SIGMOD
international conference on management of data, pp 394–405

37. YingW, Chung F,Wang S (2014) Scaling up synchronization-inspired partitioning clustering. IEEE Trans
Knowl Data Eng 26(8):2045–2057

38. Zhang T, Ramakrishnan R, Livny M (1996) An efficient data clustering method for very large databases.
ACM SIGMOD international conference on management of data, pp 103–114

Junming Shao received his Ph.D. degree with highest honer (“Summa
Cum Laude”) at the University of Munich, Germany, in 2011. He
became the Alexander von Humboldt Fellow in 2012. Currently, he is
professor of Computer Science at the University of Electronic Science
and Technology of China. His research interests include data mining
and neuroimaging. He not only published papers on top-level data min-
ing conferences like KDD, ICDM, SDM (two of those papers have won
the Best Paper Award), but also published data mining-related inter-
disciplinary work in leading journals including Brain, Neurobiology of
Aging, and Water Research.

Xinzuo Wang received his Bachelor Degree in the Institute of Com-
puter Science at the University of Electronic Science and Technology
of China. Currently, he is studying for his mater degree at the North-
western University, USA. His research interests include data mining
and machine learning, especially high-dimensional clustering, scalable
clustering and heterogenous network mining.

123

www.manaraa.com

Synchronization-based scalable subspace clustering of… 111

Qinli Yang received the Ph.D. degree in 2011 from the university of
Edinburgh and is an associate professor working in the University of
Electronic Science and Technology of China. Her research focuses on
interdisciplinary work of water resources research and data mining,
especially for hydrological data mining in the changing environment.
She not only contributed to leading journals including Water Research,
Environmental Modelling and Software but also published work in top-
level data mining conferences like KDD and ICDM.

Claudia Plant received her Ph.D. in 2007 and currently is the
head of research group Data Mining at University of Vienna. Her
research focusses on database-related data mining, especially cluster-
ing, parameter-free data mining and integrative mining of heteroge-
neous data. She not only contributed to top-level database and data
mining conferences like KDD, SIGMOD, ICDM, ICDE but also pub-
lished application-related interdisciplinary work in leading journals
including Bioinformatics, Cerebral Cortex and Water Research.

Christian Böhm is professor of Computer Science at the University
of Munich (Ludwig Maximilians Universität), Germany. He received
his Ph.D. in 1998 and his habilitation in 2001. His former affilia-
tions include the Technische Universität München and the University
of Health Sciences, Medical Informatics and Technology, Hall in Tyrol,
Austria. His research focus is on database systems and data mining,
particularly index structures for similarity search and clustering algo-
rithms. He has received 4 research awards including the SIGMOD best
paper award 1997 and the SIAM SDM best paper honorable mention
award in 2008.

123

www.manaraa.com

Reproduced with permission of
copyright owner. Further

reproduction prohibited without
permission.

	Synchronization-based scalable subspace clustering of high-dimensional data
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	2.1 Synchronization and models

	3 The algorithm ORSC
	3.1 Synchronization: a new viewpoint for subspace clustering
	3.2 Weighted interaction model
	3.2.1 Local interaction
	3.2.2 Weighted interaction

	3.3 Simulation of the object dynamics
	3.4 Synchronized clusters search
	3.5 Parameter setting

	4 Scaling up synchronization-based subspace clustering to massive data
	4.1 Entropy-based data partitioning
	4.2 Iterative dynamic clustering
	4.3 Complexity analysis

	5 Relationship to other clustering paradigms
	5.1 Synchronization-based clustering algorithms
	5.2 Other dynamic clustering algorithms

	6 Experimental evaluation
	6.1 Effectiveness
	6.1.1 Synthetic data
	6.1.2 Small real-world data sets
	6.1.3 Large-scale real-world data sets

	6.2 Efficiency
	6.3 Impact of parametrization

	7 Discussion and conclusions
	Acknowledgements
	References

